If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2+19t+10=0
a = 6; b = 19; c = +10;
Δ = b2-4ac
Δ = 192-4·6·10
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-11}{2*6}=\frac{-30}{12} =-2+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+11}{2*6}=\frac{-8}{12} =-2/3 $
| 6t^+19t+10=0 | | -6x+9=4(5–x) | | 2r^2-7r=-4 | | 2^x^2=149 | | 2(6y-5)=4(3y+7) | | .2x+10=1.2x+14 | | |3x-5|=(2/3) | | 72=4(h) | | x+2+3x-6=12 | | 2x-34-x-34=15 | | 2x-34-x-34=16 | | 2x-34-x-34=17 | | 41=6+x/41 | | 8r+30=0 | | 6=-48x | | n/2+2=10 | | 2x+6=(3x-9) | | 12x+16=4+6x | | 114=-4(6n+6)6 | | 2h+11-3h=12 | | Y=1/2(x-2) | | b+(-3)=-9= | | 1/3p+1/2=2 | | 9t-3=9t+1 | | h/9=13= | | .12x=102.3 | | 4x-10=190 | | 16x+3=-4x-7 | | 2=7(k+4)+9k | | -2p+4(3p-4)=-56 | | a+2=-14-a | | -3v+9v—17=-1 |